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Abstract

Significance: Collagen is the most abundant protein in vertebrates and is found in tissues that
regularly experience tension, compression, and shear forces. However, the underlying mecha-
nism of collagen fibril formation and remodeling is poorly understood.

Aim:We explore how a collagen monomer is visualized using fluorescence microscopy and how
its spatial orientation is determined. Defining the orientation of collagen monomers is not a
trivial problem, as the monomer has a weak contrast and is relatively small. It is possible to
attach fluorescence tags for contrast, but the size is still a problem for detecting orientation using
fluorescence microscopy.

Approach: We present two methods for detecting a monomer and classifying its orientation.
A modified Gabor filter set and an automatic classifier trained by convolutional neural network
based on a synthetic dataset were used.

Results: By evaluating the performance of these two approaches with synthetic and experimen-
tal data, our results show that it is possible to determine the location and orientation with an error
of ∼37 deg of a single monomer with fluorescence microscopy.

Conclusions: These findings can contribute to our understanding of collagen monomers inter-
action with collagen fibrils surface during fibril formation and remodeling.
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1 Introduction

Collagen is the predominant fibrillar component and the most abundant protein in vertebrate
animals.1 Its molecular unit, ∼300 nm long with a diameter of 1.5 nm,2 is composed of three
α-chains assembled into a triple-helix.3 In an adult tissue, collagen molecules are assembled into
20 nm to a few hundred nanometers diameter fibrils4 in a quarter-staggered arrangement.5 These
fibrils are the fundamental structural unit in a variety of load-bearing tissues, such as bone, ten-
don, ligament, blood vessel, skin, and cornea.6 Although fibril assembly and remodeling have
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been widely investigated, their underlying molecular mechanisms are yet poorly understood.7

Specifically, the detailed mechanism by which the collagen molecules are added to the collagen
fibrils is not known. We are thus interested in visualization of free-collagen monomers interact-
ing with the fibril surface.

Though collagen fibrils themselves are readily imaged via light8 and electron microscopy,9

less imaging has been done on monomers and their dynamic interaction with the fibril surface.
To obtain an image of a collagen monomer, electron microscopy is often used.10 The limitation
of this detection technique is that as a result of the sample preparation processes the samples
are destroyed. Thus, electron microscopy allows us to observe monomer orientation only
statically on a fixed sample. Detecting location and orientation dynamically is important in
identifying the mechanisms that promote or suppress the molecular assembly of collagen.

Fluorescent labels can be attached to molecules and excited with short wavelength light so
that it is possible to locate them by imaging the emitted light at a longer wavelength. The chemi-
cal structure of the monomer is such that there are multiple sites where a fluorophore can attach.
We have used this opportunity and previously showed that, with increasing fluorophore density,
we can control the average number of labels per each monomer.11,12 Labeled monomers func-
tionality tests showed that monomers labeled with more than two tags are significantly disrupted
and do not participate in the collagen fibrillogenesis process. However, adding two or less labels
mostly preserved the labeled monomers functionality.11,12 Furthermore, we introduced single
molecule, multilabel fluorescence orientation microscopy to detect collagen monomers orien-
tation with multiple labels.

When the fluorophores are located at two points along the collagen monomer, the separation
is smaller than the resolution. Therefore, the epi-fluorescence image is the incoherent superpo-
sition of two point-spread functions (PSFs) of the microscope at the emission wavelength with
each one centered on one of the two fluorophores. Since the separation is smaller than the res-
olution, the image can be approximated into an ellipse where the major axis represents the col-
lagen molecule orientation. To identify orientation, at least two fluorescent labels must be
attached to each sample as one label is only sufficient to determine location. There are 38 pos-
itively charged and hydrophilic lysines and one N-terminal α-amine as potential binding site on
each α-chain for the label. In our tagging approach, monomeric collagen was labeled at pH 7.5
with amine-reactive dyes to increase the likelihood of attaching a fluorophore at the N-terminal
of the monomer and consequently maximize the separation between the N-terminal bound fluo-
rophore and a secondary fluorophore closest to the C-terminal. Since monomers labeled with
more than two tags significantly disrupt monomer functionality,11,12 we limited our investigation
to monomers labeled with only one or two fluorophores. In this study, unlabeled monomers were
not observed (due to lack of fluorescent signal) and singly labeled monomers were located but
orientation was not determined. We considered the doubly tagged monomers and developed the
first nondestructive technique to detect their orientation under epifluorescence microscopy.

First, we developed a simulation of the optical system to generate synthetic visualizations of
collagen monomers. We then used this simulation to generate a dataset of artificial images, with
synthetic monomers with degrees between [−90 deg, 90 deg]. The spacing of the fluorophores
was varied randomly between 150 and 300 nm to simulate a variety of binding sites for the
second fluorophore. An average background level was computed based on scattering of light
that subsequently leaks through the filters. This level could be increased to account for out-
of-focus fluorophores and autofluorescence for unlabeled monomers. Along with the signal pho-
tons, this mean background was subjected to the Poisson distribution. The mean background was
subtracted for processing, but the noise associated with the Poisson distribution remained. In one
algorithm, these images were used to train a classification model with a convolutional neural
network (CNN). Machine learning approaches have been used to classify collagen in space.13

However, previous studies generate models to give a diagnosis as an output for healthy or
unhealthy collagen. This requires a higher composition level of collagens as fibrils and higher
observation dimensions around 10 μm. This model was used to distinguish the difference
between single- and double-tagged monomers and in the latter case its orientation. In the second
algorithm, Gabor filters were used to compare performance and accuracy. Both algorithms were
tested and compared using synthetic data. Finally, we tested the performance of these models in
detection of position and orientation of labeled monomers, which were absorbed on glass.
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2 Methods

2.1 Collagen Labeling

Type I collagen solution (5026-50ML, TeloCol, Advanced BioMatrix) was used for the study
and labeled with AF488 (Alexa Fluor 488 TFP ester, A37570, Invitrogen) as described previ-
ously.11,14 Briefly, collagen monomers were diluted in 10 mM HCl to 1 mg∕mL and then mixed
1:1 with 0.2 M sodium carbonate–bicarbonate buffer (24095, Polysciences) containing 1 M
sodium chloride (S671-3, Fisher Scientific). AF488 was dissolved in dimethyl sulfoxide
(D12345, Life Technology) to a concentration of 0.5 mg∕mL and added to collagen solution
in excess amount to achieve at least two fluorophores on average on each collagen monomer.
The reaction mixtures were stirred for 3 h at room temperature. Labeled monomers were
dialyzed in dialysis cassettes (Slide-A-Lyzer, 3.5K MWCO, 3 mL) for 3 days in 10 mM HCl.
Collagen concentration was measured using DC Protein Assay (Bio-Rad). AF488 concentration
was measured using Beer–Lambert law. Degree of labeling was measured as moles of fluoro-
phore per mole of collagen.

2.2 Optical System

The sample was illuminated with a blue LED light source [ThorLabs M470-L3-C5, 470 nm,
650 mW (minimum) LED]. The filter set used was a Nikon Fluorescence Cube (96311 B-
2E/C). The excitation filter and dichroic reflection on this cube provide a pass-band excitation
filters of blue light (465 to 495 nm wavelengths) as shown in Fig. 1(a) (data provided by the

Fig. 1 Transmission and reflection spectra of the Nikon 96311 B-2E/C filter cube that is obtained
from the manufacturer. (a) Light from the source is transmitted through an emission filter and
reflected by the dichroic mirror. (b) Light emitted by the sample is transmitted through an excitation
filter and dichroic mirror. (c) Emission through the excitation spectrum that is obtained from the
manufacturer of the AF488 fluorescent dye.
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manufacturer). Wavelengths that pass through the filter and are reflected by the dichroic mirror
are focused onto the sample with a 60× objective lens (Nikon’s CFI Apochromat TIRF Series,
numerical aperture: 1.45) and fluorescent emission is detected through the same lens.
Fluorescence from the sample is transmitted through the dichroic and emission filters with a
pass-band for green light (515 to 555 nm wavelengths). Most of the emission spectrum is passed
through this filter as shown in Fig. 1(c). From Fig. 1(b), we note that the transmission of any
scattered or reflected excitation light at 470 nm is reduced by nearly 10 orders of magnitude. The
microscope was a Nikon inverted microscope (ECLIPSE TE2000-E) that used two cameras:
CoolSNAP EZ CCD Camera (1392 × 1040 imaging array with 6.45-μm square pixels). The
images obtained by the cameras were taken using the Nikon NIS-Elements software.

2.3 Image Simulation

The CoolSNAP EZ CCD camera has a resolution of 6.45 μm per pixel, with a 60× objective the
resolution results in 110 nm per pixel. A collagen monomer at 300 nm long only subtends a few
pixels at best. However, due to diffraction, a fluorophore, which can be considered a point object,
is imaged as the PSF, of diameter:

EQ-TARGET;temp:intralink-;sec2.3;116;531PSF ¼ 1.22
λ

NA
;

in which NA ¼ 1.45 is the numerical aperture of the objective and λ is the wavelength, centered
at 530 nm. PSF is measured as the diameter of the first dark ring. Thus, for a single fluorescent
tag we expect a spot size of about 450 nm. We developed a simulation of collagen images. The
simulation and all the image processing were performed with MATLAB, 2019.

The first step of the simulation was to determine the number of electrons the sensor produces
from signal, background, scattered light, and noise. The radiance spectrum of the blue light
source (470 nm) was multiplied by the transmission through the excitation filter and reflection
through the dichroic filter [Fig. 1(a)]. Then, the above spectrum was converted to photon spectral
irradiance rate using the photon energy and the solid angle of the objective lens, in which the
solid angle was calculated by

EQ-TARGET;temp:intralink-;sec2.3;116;369Ω ¼ 2π

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

NA2

n2

r �
;

in which n ¼ 1.56 is the refractive index of the glass medium that holds the sample. Thus, the
photon spectral irradiance was calculated using the equation:

EQ-TARGET;temp:intralink-;sec2.3;116;297Photon spectral irradiance ¼ hc
λ

· Ω · spectral radian;

in which h is the Planck constant and c is the speed of light. This photon spectral irradiance is the
number of photons per unit time and area illuminated onto the sample. This quantity was multi-
plied by the absorption cross-section of the fluorescent tag 1.212 × 10−20 m−2, (provided by the
manufacturer) of the AF488 dye to determine the rate of the number of photons absorbed by
the sample. Using the quantum yield and lifetime of the dye, the rate of photons emitted by
the sample entering the camera was determined as

EQ-TARGET;temp:intralink-;sec2.3;116;183Photon emission rate ðPERÞ ¼ Ω
4π

�
ϕ

1
γ − t

�
;

in which ϕ is the quantum yield, γ is the photon absorption rate, and t is the lifetime. The emis-
sion rate was then multiplied by Ω∕4π, the fraction of light collected in the solid angle Ω of
the objective and the transmission spectra of the emission filter and dichroic mirror in Fig. 1(b).
The number of electrons excited in the sensor from the emission of the sample:
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EQ-TARGET;temp:intralink-;sec2.3;116;735Ne ¼ t
Z

PER � QEdλ;

where the quantum efficiency (QE) spectrum of the camera system is provided by the manu-
facturer and the integral is over wavelength.

We then simulated the number of electrons in the sensor from the scattered light and back-
ground noise. In our simulation, we estimated a background level of light caused by excitation
light that passed through the dichroic and emission filters to reach the detector. The background
was considered as a number of photons per pixel and could include other sources such as out-of-
focus fluorophores and autofluorescence. To model leakage of the excited light, a similar process
was used except that instead of calculating fluorescence from absorption and quantum yield,
we multiplied the photon irradiance by the scattering section of the AF488 dye, estimated as
1.1 e−13 m−2. The rest of the process is the same, but now the wavelength is still that of the
source, so the transmission through the emission filters is lower. Background light can also
be added. The noise is determined by the exposure time multiplied by the readout RMS and
dark current values provided by the manufacturer plus electrons from scattering. It is important
to note that these signal and noise values do not account for the autofluorescence of the sample,
scattered light that leaks in the camera, and residues of fluorescent material.

To generate a synthetic image, a random pixel position was chosen to emulate one of the
fluorophores with the value of the signal in electron counts, in a resolution 10 times smaller than
the original dimensions. To simulate a double-labeled monomer, a second fluorophore was
located at a random distance from the other, at a maximum of 300 nm down to 150 nm, with
a random orientation between [90 deg, −90 deg] in intervals of 15 deg. We chose to limit the
minimum separation of fluorophores to 150 nm. The pixel size dictated by our camera and objec-
tive is 110 nm, so we do not expect reliable measurements of double-labeled monomers below
this limit. Nevertheless, we will image about half of the double-labeled monomers, providing a
useful sample of monomer orientation. With random locations for the second fluorophore, about
half of the double-labeled monomers would be included within these dimensions, enabling a
statistical analysis of orientation in a sample of collagen monomers. The image was convolved
with the PSF that represents the optical transfer function. The image was then resized to its
correct dimension. Finally, a Poisson distribution was applied to the total number of electrons,
resulting in the final image (Fig. 2).

2.4 Bank of Gabor Filters for Determination of Orientation in Monomers

Gabor filters are linear filters that are well-suited for quantification of given spatial frequency
components at specific locations and orientations in a two-dimensional signal.15,16 Figure 3
shows the steps of the algorithm we devised to estimate monomer orientation with Gabor filters.
A simulated input image, with one double-tagged monomer is enhanced by the nonlinear “block-
matching and 3D filtering” denoising method.17 Samples of the filters in the bank are chosen

Fig. 2 Simulation for collagen monomers: first generation of fluorescence point sources and defin-
ing a PSF determined by our optical setup. Then, the point sources are seen by the diffraction-
limited system after the aperture. The resulting image representing the accumulation of photons in
the camera is corrupted with Poisson noise. Result in a dataset labeled by different orientations
including singularity monomers. Colormap indicates electron counts.
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[Fig. 3(a)] and show all feature maps resulting from convolution of the enhanced image and all
sample filters [Fig. 3(b)]. Gabor feature is the result of the product of the image with the filter,
being the value different for each of the filters in the bank. The maximum value of the Gabor
feature is plotted for each orientation [Fig. 3(c)]; the maximum degree is shown in perpendicular
orientation. The final orientation estimation is superimposed upon the input image [Fig. 3(d)].
A Gabor filter cannot detect a monomer that is singularly labeled, as the pattern is expected to be
circularly symmetric, and thus all the filters will have similar results except for variations caused
by the Poisson distribution and noise. For this reason, an initial decision must be made based on
the area to discern if the monomer is one or two labeled. To determine pixels that are part of the
monomer area, a value for each pixel of 175 counts is selected as threshold. If the value is over
this threshold it can be considered as part of the signal and not noise or background, being able to
calculate the area of a monomer. For the modify Gabor filter, if the area has less than seven pixels
above threshold it will be classified as a single monomer.

2.5 CNN for Detection of Monomer Orientation

In another algorithm to measure the angle of orientation of the monomers, a machine learning
approach was taken. ACNN was trained and tested on 26,000 samples of simulated data, divided
into 70% for training and 30% for testing. A validation dataset conforms of 6500 samples is
used to measure the results in Sec. 3.1.2. The task was trained as a classification problem,
with monomers labeled as being within one of 12 classes, each with an angular range of 15 deg.
There is also a 13th class that denoted single-tagged monomers. These are monomers that only
contain one fluorescent tag and therefore an orientation cannot be determined. We used two

Fig. 3 Steps for detection of orientation with a bank of Gabor filters. (a) Montage of real part of a
bank of Gabor filters with wavelength of 5. (b) Magnitude of Gabor output for the results of applying
all the sample filters to a monomer image. We will also call this the Gabor feature, which is a
function of spatial position in both axes and the orientation of the specific filter in the bank.
(c) Polar plot of maximumGabor feature for each orientation, finding the degree for the orientation.
(d) Input monomer image and superimposed position and detected orientation. Detected orien-
tation is 15 deg, followed by 2.1891 being the maximum value of the corresponding Gabor feature
for the overlap of the image with the filter. Colormap indicates electron counts.
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convolutional layers with a categorical cross-entropy loss function for the classification task
with a calculation of 52,909 parameters. The model was trained in three epochs and the number
of samples was 32 for the batch size. Architecture of CNN is described in Fig. 4. Training was
made in Python3.6 and Keras2.3.1 in Intel Core i7-8750H CPU@ 2.20 GHz 2.21 GHz machine.
Total time in training was 6.87 s. Our use of CNN is distinct from traditional tasks this type of
architecture is used to solve. Unexpected orientation of objects can typically fool object detec-
tion models, whereas our architecture is trained to measure this very orientation.

3 Results

3.1 Detection of Monomer Orientation in Simulated Data

3.1.1 Gabor results

The Gabor filter set has a performance of 55.03% accuracy and when it failed, the misclassi-
fication was usually next to the closest orientation leading to an error of 15 deg. If a monomer has
a single fluorophore, the filter will try to detect an orientation anyway. The circular symmetry
will be broken by pixel-to-pixel variations caused by the Poisson statistics or noise and one of the
filters will incorrectly have the best match. To correct this deficiency, an initial decision based on
area was made to distinguish between a double and single labeled monomer. For validations
6500 samples were used. The results of classification are presented in Fig. 5(a). Most misclas-
sifications are close to the diagonal, so we can say that Gabor filter has an error of ∼15 deg.

3.1.2 CNN results

The machine learning approach using the CNN produced 89.45% accuracy. This indicates that
CNN rarely misclassifies, but it raises concern that the algorithm may be overfitted. When
working with the simulated data, high accuracy of a complex CNN may be a sign of overfitting.
Here, we understand that a CNN is complex if it has a large number of parameters with respect
to the complexity of the space of plausible monomer images. To lower that risk of overfitting,
we trained a relatively simple neural network. Even current CNN research for computer vision
focused on performance yields models that have a number of parameters in the order of mil-
lions.18 We did not use real data for training, the most conclusive experiment is to face CNNs to

Fig. 4 Architecture of CNN having as components two convolutional layers.
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real data. As the trained CNN is still classifying orientation in images of real monomers, we can
be sensibly sure that overfitting is not important in our results. Furthermore, the model accurately
classified monomer orientation using the same 6500 validation samples as the Gabor filters. The
results of classification and misclassification are presented in Fig. 5(b). The success of our model
could likely be attributed to the low dimensionality of the layer. That is, the kernels learned are
quite simple despite having to do with rotation. However, this learning approach is still more
accurate than other Gabor filters in simulated data.19

3.2 Experiments with Fluorescent Collagen Monomers

Next, we applied the two algorithms to data collected from images of labeled monomers, which
were absorbed on glass in the laboratory. The samples were from a 314-μg∕mL collagen solution
with an average labeling of 2.5 tags per collagen monomer. Images were taken with an exposure
time of 5 s. For single molecule visualization, samples were diluted 100 to 1000 times to prevent
light from saturating the camera and to reduce the fluorescence and scattering from monomers
that were out of focus. Monomers in the experimental image were clearly visible so the images
were tested to determine orientation (Fig. 6).

3.3 Detection of Monomer Orientation in Experimental Data

3.3.1 Detection in isolated monomers

Assuming that all fluorophores were attached to collagen, collagen monomers were detected by
the level of signal. In any given image, it was possible to detect several isolated monomers. As
shown in Fig. 5, the Gabor filter is more likely to misclassify than the CNN model. One problem
is that it is not possible to distinguish between single and double tagged monomers using just the
Gabor filter so that decision was based on the area of the image. The most significant discrepancy
between the two models can be observed in Fig. 7. When the algorithms differ, there is uncer-
tainty as to which is more correct because, unlike the simulations, the experimental data lack
ground truth. Epifluorescence measurement followed by sample preparation and electron micro-
scope measurements would be a challenging task, probably requiring a special instrument with
both imaging modalities.

3.3.2 Sequential detection

In biomedical applications, collagen monomers are usually studied in physiological conditions
and in association with collagen fibrils. To address the dynamic interaction of collagen mono-
mers with fibril surfaces, different monomers were analyzed in successive images collected at

Fig. 5 Classification results of synthetic data. Show accuracy and misclassification of the two
approaches. (a) Confusion matrix of the Gabor filter set. (b) Confusion matrix of the CNN.
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Fig. 7 Confusion matrix for the twomodels. The results for the detection of 154 isolated monomers
for Gabor filter and the CNN predictions.

Fig. 6 (a) An experimental image using fluorescence microscopy. (b) Five numbered regions of
interest show fluorescence detection results for isolated collagen monomers. Region numbers
correspond to the numbered locations in (a). Examples show the output of the classification of
orientation of Gabor filter and CNN model in degrees.
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different times to test the reproducibility of the algorithms under different realizations of Poisson
electron statistics and noise. Eight pictures were captured separated in time by 10 s. There is a
slight variation from one capture to the next, as the illumination and the noise vary. The results of
the algorithms for every isolated monomer through the eight times were compared. Also, a visual
classification for each monomer was made, with the purpose of comparing the similarity of the
models to human eye observation. Observation was done by one of the authors. Monomers that
are classified constantly in the same position through time are more likely to have a specific
orientation. An important consideration is distinguishing between singularity and multiply
labeled classification, as it is not possible to determine orientation to singularity labeled.
The variation of orientation for double labeled classification is determined through the sequential
frames calculating the standard deviation of degree. Singularity labeled classification is not
accounted for this purpose because of no directionality. Detections from different monomers
through time are shown in Fig. 8. The average standard deviation for double label monomers
with detected degree of orientations was 37.79 deg for the Gabor filter, 38.77 deg for the CNN
model, and 29.9 deg for the eye observation.

In addition to noise and Poisson fluctuations in electron count, there may be other reasons for
differences between successive images. The most likely is photobleaching as the sample is
excited several times. Measuring the difference of the sequential images pixel by pixel over the
eight times sample shows that the average signal decreases by only 2.18 counts with a standard
deviation of 13.5 counts. Because the signal is so similar in every frame substantial photobleach-
ing is unlikely. Imaged monomers were all adhered (completely or partially) to glass. It is pos-
sible that some of those monomers were only partially adhered (e.g., only one end of the
monomer was adhered to the glass, whereas the other end was free). This would introduce lim-
ited variability in the monomer orientation. Therefore, the variability of monomers orientation
over time shown in Fig. 8, can be due to detection method and/or partial adherence of monomers
to glass.

Fig. 8 Table of comparison for every timestamp for monomers in the same sample. Images
were taken every 10 s. Orientation is classified between [−90 deg, 90 deg] for double labeled
monomers and is shown as a continued function. Classification of singularity labeled monomers
(SM) is shown as separated points, for the reason of no directionality. Results from the Gabor
filter, the CNN model, and the eye observations are shown in blue, red, and green colors,
respectively.
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4 Discussion and Conclusion

The use of epifluorescence microscopy allows for the detection and location of collagen mono-
mers in solution. Multiple tags enable measurement of orientation. This investigation presents
two algorithms to detect and analyze monomers smaller than the wavelength of light. With these
measurements and algorithms, it is possible to observe collagen monomers dynamically in
physiological conditions and in relation with collagen fibrils. The strong signal and compara-
tively low background provided by fluorescence allow for a nondestructive, high-contrast
method to characterize these otherwise low-contrast objects. Using two fluorescent labels allows
for the detection of monomer orientation. The machine-learning approach significantly outper-
forms the Gabor filters and appears to outperform human observers. Given the opacity of CNNs
and the consequent lack of truthfulness and explainability, one may ask why the CNN behaves so
well? We believe the reason lies in the large training set that teaches CNN to distinguish small
departures from circular symmetry caused by Poisson fluctuations and noise from larger ones
caused by the relative location of two fluorescent tags.

Collagen monomers in solution polymerize spontaneously into fibrils under physiological
conditions,20 but the mechanisms that cause this to happen are not well understood. The use
of a nondestructive method to measure the monomer orientation relative to nearby newly form-
ing fibrils is a powerful tool to study the process of fibril formation in real time.

It is possible that collagen could cluster leading to accidental association of two labels on
different by closely spaced monomers as a double-labeled one. However, we used an extremely
small concentration of labeled monomers in our experiment to avoid monomers interaction.
Also, labeled monomers that are out of focus could emit light that would be detected in an image,
adding more noise than signal. In this work, we measured each monomer in multiple successive
times. While we did not have the out of focus problem, it can be avoided by exchanging the
solution after labeled monomers were absorbed to the surfaces (e.g., glass or fibril). In summary,
this study provides evidence that the detection of collagen monomer orientation is possible using
fluorescence microscopy with an application of a CNN. Such measurements could contribute
to an increased understanding of monomer alignment during the process of collagen fibril
formation. The next objective will inevitably be to determine orientation of labeled monomers
on the surface of collagen fibrils in real time.
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